Generalized matrix period in max-plus algebra

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix period in max-drast fuzzy algebra

Periods of matrix power sequences in max-drast fuzzy algebra and methods of their computation are considered. Matrix power sequences occur in the theory of complex fuzzy systems with transition matrix in max-t algebra, where t is a given triangular fuzzy norm. Interpretation of a complex system in max-drast algebra reflects the situation when extreme demands are put on the reliability of the sy...

متن کامل

Max-plus algebra

The max-plus semiring Rmax is the set R∪{−∞}, equipped with the addition (a, b) 7→ max(a, b) and the multiplication (a, b) 7→ a + b. The identity element for the addition, zero, is −∞, and the identity element for the multiplication, unit, is 0. To illuminate the linear algebraic nature of the results, the generic notations +, , × (or concatenation), 0 and 1 are used for the addition, the sum, ...

متن کامل

Max-Plus algebra on tensors and its properties

In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.

متن کامل

Max-Plus Linear Algebra in Maple and Generalized Solutions for First-Order Ordinary BVPs via Max-Plus Interpolation

If we consider the real numbers extended by minus infinity with the operations maximum and addition, we obtain the max-algebra or the max-plus semiring. The analog of linear algebra for these operations extended to matrices and vectors has been widely studied. We outline some facts on semirings and max-plus linear algebra, in particular, the solution of maxplus linear systems. As an application...

متن کامل

Linear Projectors in the max-plus Algebra

In general semimodules, we say that the image of a linear operator B and the kernel of a linear operator C are direct factors if every equivalence class modulo C crosses the image of B at a unique point. For linear maps represented by matrices over certain idempotent semifields such as the (max,+)-semiring, we give necessary and sufficient conditions for an image and a kernel to be direct facto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2005

ISSN: 0024-3795

DOI: 10.1016/j.laa.2005.02.033